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Motor proteins are biological enzymes that convert chemical energy to mechanical work in cells. Kinesin-1
is a motor protein that transports vesicles along microtubules and is widely believed to be responsible for
anterograde transport of synaptic vesicles in neurons. Advances in single-molecule techniques have shown that
single kinesin motors are capable of processive movement along the microtubule at a maximum velocity of
approximately 1 �m /s. The velocity decreases roughly linearly in response to load until reaching stall at a
load of approximately 6 pN. Several theoretical models have been proposed that describe the steady-state
motion of single kinesin motors. Growing evidence suggests that kinesin functions collectively in cells,
whereby several motors work in a coordinated manner to transport a vesicle. A transient description is required
to describe collective dynamics, as the interactions among coupled motors induce time-varying forces on each
motor. Herein a mechanistic model of kinesin is proposed that is capable of accurately describing transient and
steady-state dynamics. Each domain of the protein is modeled via a mechanical potential. The mechanical
potentials are related explicitly to the chemical kinetics of each motor domain. The mechanistic model was
used to simulate the collective behavior of coupled kinesin motors under varying loads, cargo linker stiffnesses,
and numbers of motors. To analyze the simulations of coordinated transport, several metrics were developed
that are specifically tailored to characterizing the synchronization of nonlinear nonsmooth oscillators such as
kinesin. The model results suggest that, in the cell, the dynamics of coupled motors under low loads are loosely
correlated. When the load is increased, such as when the cargo encounters an obstacle such as another vesicle
or the cytoskeleton, motors become more correlated in response to increased loads, allowing them to produce
greater forces. Increasing the number of motors involved in the transport does not appreciably increase the
dimension of the trajectory, implying large numbers of motors are able to function in a highly correlated
manner without becoming fully synchronized.
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I. INTRODUCTION

Motor proteins, also called molecular motors or mecha-
noenzymes, convert chemical energy into structural �confor-
mational� changes, producing mechanical work necessary for
a wide range of cellular processes including vesicle trans-
port, cell division, muscle contraction, cell motility, DNA
and RNA replications, transcription, and remodeling of mac-
romolecular assemblies �1–4�. One class of motor proteins,
kinesins, uses the energy from adenosine triphosphate �ATP�
hydrolysis to transport vesicles and organelles along micro-
tubules. It is generally accepted that kinesin-1 uses this
movement to transport synaptic vesicles toward the plus end
of microtubules in neurons �5�. Single-molecule experiments
have characterized the steady-state behavior of kinesin-1,
showing a maximum speed of approximately 1 �m /s and a
maximum load of 6 pN �6–11�. Despite extensive efforts
�12–18�, a complete description of the mechanisms kinesin
uses to produce movement remains illusive, in particular
with respect to cooperativity between motor domains and
among groups of motors.

There is considerable evidence that kinesin functions col-
lectively in cells, whereby teams of several kinesin motors,
as well as other motor proteins, are involved in the transport
of each vesicle �1,3,19�. Recent observations of in vivo
vesicle trafficking suggest that the cooperation among mo-
tors may lead to behavior significantly different from that of
single molecules. Researchers have hypothesized the coordi-
nation of multiple kinesin motors results in increased step
sizes �20�, processivity �21�, and velocities of up to 10 times
the in vitro gliding velocity �22,23�. It should be noted that,
while intriguing, these observations and their interpretation
remain controversial. Diehl et al. �24� observed that engi-
neered assemblies of two and three motors increased the
speed of gliding assays by a factor of 2 over single motors.
In addition to recent experiments, theoretical studies by Ba-
doual et al. �25� hypothesized that the directionality in a
multiple motor gliding assay is a property of the ensemble of
motor molecules and not entirely determined by the single-
molecule characteristics of a motor molecule. The model of
Badoual et al. �25�, however, is limited to the case where the
connections between motors are rigid and the spacing be-
tween motors is constrained to be an irrational multiple of
the binding site spacing. Several researchers have examined
the synchronization of stochastic oscillators �26–31�. For ex-
ample, Prager et al. �32� found that for globally coupled
three-state oscillators, the dynamics of the oscillators could
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become coherent if one of the transitions is deterministic.
An understanding of the mechanism kinesin-1 uses to pro-

duce directed movement has numerous potential applications
in medicine and nanotechnology. For example, kinesin-1 is
implicated in neurological diseases such as Alzheimer’s dis-
ease and Parkinson’s disease �33,34�. An understanding of
kinesin-1 may have applications to cancer therapies, as two
major drugs used to treat cancer, Taxol and Monastrol, target
the function of kinesins �35–37�. Ultimately, the transport
machinery of cells could be used to perform targeted drug
delivery. Biological motors can also be used to power nano-
scale devices, such as for molecular sorting and lab-on-a-
chip applications �38–40�.

Existing models of motor proteins are not well suited to
describing transient dynamics. A transient description is nec-
essary to model coupled motor proteins, as the movement of
each motor causes time-varying forces on the coupled mo-
tors. Existing models can be classified as kinetic models
�14,18,41–44� or thermal ratchet models �13,15–17,45–51�.
Kinetic models describe the mechanochemical cycle as a set
of discrete states with stochastic, reversible transitions be-
tween them. While kinetic models are well suited to describ-
ing the steady-state behavior of motor proteins, a quasisteady
approximation is made that neglects dynamics at fast time
scales. In addition, the dynamics are defined at a small num-
ber of discrete spatial locations �2–4 per step in current mod-
els�. Thus, the force between coupled motors, dependent on
the time-varying location of each motor, cannot be resolved.
Thermal ratchet models view the motor protein as a single
particle or group of particles in stochastically switched po-
tentials. Thermal ratchet models are also well suited for de-
scribing the steady-state behavior of motor proteins. How-
ever, the potentials must be defined before solving for the
motion of the motors. Thus, they cannot account for poten-
tials that are dependent on the instantaneous coupling be-
tween motor domains or among multiple motors.

Previously, a deterministic mechanistic model of
kinesin-1 was developed and used to study the collective
behavior of kinesin motor proteins transporting a common
cargo �52�. While the deterministic model gives first-order
approximations of the collective dynamics, the dynamics of
kinesin-1 are intrinsically stochastic due to the effect of ther-
mal energy on the diffusion of the motor domain between
binding sites and the chemical kinetics. Randomness may
have a significant effect on the collective behavior. For ex-
ample, two identical deterministic oscillators with the same
initial conditions will follow exactly the same trajectory.
However, for stochastic oscillators, the random component
of the oscillator dynamics will differ for the two oscillators,
such that although the oscillators are identical, their trajecto-
ries will differ. Accordingly, while coupled deterministic os-
cillators can become perfectly phase-locked, stochastic oscil-
lators must overcome random effects to phase lock. It is
more likely that stochastic oscillators will, instead of becom-
ing perfectly phase-locked, exhibit fluctuations about a
phase-locked state. In this paper, we extend the deterministic
model to describe stochastic chemical kinetics, where the
time-varying distributions of the chemical dwell time are
taken into account. The mechanistic approach presented
herein permits an efficient description of the stochastic, col-

lective dynamics of kinesin. Metrics are developed to quan-
tify the synchronization of coupled nonlinear nonsmooth os-
cillators such as kinesin. With the mechanistic model and
metrics of synchronization, we examine the effect of stochas-
ticity on the collective behavior with respect to load, cargo
linker stiffness, and the number of motors. The load and the
cargo linker stiffness are expected to have an effect on the
collective behavior, as these parameters modulate the cou-
pling strength between the motors or the energetic incentive
motors gain by synchronizing. Various numbers of motors
are examined as intracellular transport is thought to involve
teams of two to ten motors �1,19,53�.

II. MODEL

The directed movement of kinesin is the combined result
of conformational transformations, the relaxation of internal
stresses, and Brownian motion. In the proposed model, the
mechanochemical cycle proceeds as follows. Beginning with
both heads at a binding site, the rear head is weakly bound to
the microtubule and the front head is strongly bound to the
microtubule. The stresses in the elastic elements and the re-
sulting �unsteady� forces propel the rear head forward.
Brownian motion pushes the head the remaining distance to
the next binding site, working against the �time and space
varying� internal stresses in the molecule. Once the diffusing
head reaches the binding site, the head is assumed to have a
high affinity to the microtubule. The majority of the time is
spent in this mechanochemical state, with both heads having
high affinity to the microtubule, but in opposite structural
states. After a dwell time corresponding to the chemical ki-
netics, the structural states of both heads switch and the cycle
repeats.

The structure of the kinesin-1 molecule is approximated
as shown in Fig. 1. The neck linkers are modeled as elastic
elements that connect the motor domains �heads� to the neck.
The equilibrium position of these elastic elements is deter-
mined by the chemical state of the motor domain. Another
elastic element connects the neck to the cargo �bead�, ap-
proximating the cargo linker. Due to the small length scales
of the problem, inertial effects are assumed negligible com-
pared to the viscous forces �2�. With these assumptions, the
equations of motion for the bead �subscript b�, strongly
bound head �subscript s�, and neck �subscript n� may be
expressed as

�bẋb = − FL + Kb�xn − xb� , �1�

�sẋs = Ks�u − xs� + Kh��s − �s� , �2�

�nẋn = − Kb�xn − xb� − Kh��s − �s� − Kh��w − �w� , �3�

where ẋ represents the velocity, x represents the position, u is
the position of the binding site, �w and �s designate the
current displacement of the weakly bound and strongly
bound heads ��s=xs−xn and �w=xw−xn with the subscript w
denoting the weakly bound head�, � is the damping coeffi-
cient due to viscosity, FL is the external load, Kb is the stiff-
ness of the cargo linker, Kh is the stiffness of the neck linker,
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and Ks is the stiffness corresponding to the strong affinity to
the microtubule in the bound state. The distances �s and �w
designate the equilibrium position of the neck with respect to
the heads �the position when the internal stresses in the mol-
ecule are balanced�.

The motion of the diffusing head is modeled using an
approach based on the mean first-passage time. The mean
first-passage time is the average time for a particle to diffuse
a prescribed distance in a given potential. The forces on the
diffusing weakly bound head �denoted by the subscript w�
are due to the internal strain,

Vi��w� =
1

2
Kh��w − �w�2, �4�

and the affinity to the microtubule,

Va�xw� = �FwL

�
−

FwL

�
cos���u − xw�/La� , if �xw − u� � La

0, otherwise,
�

�5�

where Fw is the affinity strength �pN� and La is the length
�nm� over which the weak binding forces are active. The
form chosen for Va�xw� approximates a potential well at the
binding site corresponding to the affinity of the weakly
bound head to the binding site. The value of the parameter
Fw which determines the strength of the affinity is based on
the kinetic mechanism of Cross �54�. Given these forces, the
potential for the diffusing head is

V = Vi��w� + Va�xw� . �6�

However, the forces acting on the diffusing head can vary
in time due to unsteady forces on the bead. As the motor
motion proceeds, the potential the head has encountered until
time t and position x is known. The potential function for the
remaining distance to the binding site is estimated based on
the motor configuration. Using the known �past� and esti-
mated �future� potentials, an estimated first-passage time is
calculated. The mean first-passage time is given by

t0 =
1

j0
=

1

D
�

0

x0

exp	− V�x�
kBT


��
x

x0

exp	V�y�
kBT


dy�dx ,

�7�

where D is the diffusion coefficient, x0 is the distance to the
next free binding site �16 nm�, kB is the Boltzmann constant,
and T is the absolute temperature �2,55�. Using t0, one may
then calculate the average velocity for the head to reach the
binding site at the first-passage time as

ẋw =
x0 − x

t0 − t
. �8�

When the time interval between each re-estimation of the
varying loads and corresponding potentials decreases, this
algorithm converges to the exact mean first-passage time be-
cause the estimated potential converges to the exact potential
as the head progresses.

The chemical kinetics of the motor protein describe the
dwell time corresponding to ATP binding and the conforma-
tional change. A model of kinesin dynamics was previously
developed by Hendricks et al. �52,56� who described the
chemical kinetics deterministically. Herein, that work is ex-
tended to include stochastic chemical kinetics, whereby the
time-varying effect of ATP concentration and internal
stresses on the distribution of the chemical dwell time are
taken into account. The inclusion of stochasticity is expected
to have significant impact on the dynamics of coupled mo-
tors. The dwell time associated with the diffusion of the mo-
tor domain between binding sites is much shorter than the
dwell time due to the chemical kinetics. Hence, only the
effect of randomness on the chemical kinetics is considered.
The chemical kinetics of each motor domain �head� is as-
sumed to behave according to Michaelis-Menten kinetics,
defined by one reversible reaction followed by an irrevers-
ible reaction. The rates are defined as

k1f = k1f ,0, �9�
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FIG. 1. Each motor domain has three states corresponding to the bound nucleotide. The structural state is described by the equilibrium
position of the neck with respect to the head, �, and the affinity to the microtubule binding site. The conformational change �change of
structural states� induces stresses in the domains of the molecule, propelling the rearward head forward. Brownian motion then pushes the
head to the next unoccupied binding site, where the structural state of the heads switches simultaneously and the cycle is repeated.
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k1b = k1b,0 exp	 1
2���s − �c�nc

kBT

 , �10�

k2f = k2f ,0, �11�

where k1f ,0, k1b,0, k2f ,0, �c, nc, and � are parameters in the
model. We assume that there is an optimal molecule configu-
ration for the chemical reaction to proceed, defined by �c. A
configuration away from this optimal configuration presents
an energy barrier to the chemical reaction, which is modeled
by increasing the effective k1b. From Kou et al. �57�, the
probability density of the chemical dwell time is

f�t� =
k1fk2f�ATP��

2A
�e�A+B�t − e�B−A�t� , �12�

where

A = �k1f�ATP�� + k1b + k2f�2/4 − k1fk2f�ATP�� �13�

and

B = − �k1f�ATP�� + k1b + k2f�/2. �14�

The asterisk denotes that �ATP� is measured in
�M �10−6 mol /L�. The probability distribution is then inte-
grated to get the cumulative probability distribution

c�t� =
k1fk2f�ATP��

2A
	 1

�A + B�
e�A+B�t −

1

�B − A�
e�B−A�t

−
1

�A + B�
+

1

�B − A�
 , �15�

which varies from 0 to 1. A uniformly distributed random
variable, w, is sampled once for each step of the motor. The
probability distribution of the chemical dwell time is com-
puted at each time step in the simulation. The chemical dwell
time corresponding to the value of the cumulative probability
equal to the random variable for that step is taken as the
instantaneous chemical dwell time TC such that

c�TC� = wj , �16�

where j is the step index. Typical distributions of the chemi-
cal dwell time are shown in Fig. 2. Increasing the forward
rates �k1f and k2f� shifts the distributions to shorter chemical
dwell times, while increasing the backward rate �k1b� shifts
the distributions toward longer chemical dwell times.

The heads are assumed to be in opposite structural states
at all times, with one head in state �3� and one head in state
�1� or �2�, as seen in Fig. 1. Therefore, only one variable is
required to describe the structural state of both heads. The
switching of structural states �corresponding to the chemical
or nucleotide states� is assumed to be dependent on the con-
figuration of the motor and also on the ATP concentration.
While one head is diffusing, the chemical state variable is
approximately constant. Once the diffusing head is within
1% of the distance to the binding site, the rate of change of
the chemical state variable is given by

�̇ = 	
�E�t

TC
, �17�

where the total enzyme concentration �E�t is taken as 5

103 �M. To our knowledge, there are no available data for
establishing the accuracy of the estimate of 1% of the dis-
tance between binding sites �0.08 nm�. However, the overall
results are only very weakly dependent on this parameter of
the model. The chemical state variable, �, is considered to
grow or decay until it reaches 	1, at which time the struc-
tural states of both heads switch simultaneously.

When multiple motors pull a common cargo, the model
assumes that the motors do not sterically interfere with one
another or their binding sites. This is equivalent to assuming
that the attachment points to the cargo are adequately spaced
so that the motors will not interfere with one another while
they are mechanically coupled. Therefore, the only coupling
between the motors is through the load. Also, the cargo
linker is assumed to sustain only forces in tension, not com-
pression. Thus, for N coupled motors the equations for the
necks and common cargo are

�nẋn,k = − Fb,k − Kh��s − �s,k� − Kh��w − �w,k� , �18�
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FIG. 2. The probability distributions of the chemical dwell time. For each step of the motor, a uniformly distributed random variable is
sampled and used as the value of the cumulative probability for that cycle. While the random variable is constant for each cycle, the
distributions are updated at each time step in the simulation.
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�bẋb = − FL + �
k=1

N

Fb,k, �19�

where

Fb,k = �Kb�xn,k − xb� , if xn,k − xb � 0

0, otherwise.
� �20�

The values of the parameters used in the model were ob-
tained by fitting the model to the single-molecule experimen-
tal data of �58�. The parameter values are summarized in
Table I. As shown in Fig. 3, the stochastic model fits the
steady-state force-velocity data well.

III. METRICS OF SYNCHRONIZATION

A large body of previous work on coupled oscillators has
focused on simple one-degree-of-freedom oscillators
�59–64�. However, motor proteins are nonsmooth oscillators
with multiple time scales in the cycle. The nonsmoothness is
caused by the switching in the variables �s and �w in Eqs.

�1�–�3� and by the tether behavior of the cargo linker in Eq.
�20�. The multiple time scales are caused by the difference in
average velocity during diffusion and during the dwell time.
Accordingly, two metrics are proposed that are specifically
tailored to quantify the synchronization of coupled nonlinear
nonsmooth oscillators.

A. Correlation dimension

The dimension of the state space attractor of the dynamics
quantifies the degree of synchronization of coupled oscilla-
tors. It is expected that when the oscillators are not synchro-
nized, the trajectory in state space is complex and many co-
ordinates are required to describe its evolution. Hence, the
dimension of the attractor of the dynamics is high. The maxi-
mum of the dimension is the total number of degrees of
freedom in the system. Conversely, if the oscillators are per-
fectly synchronized onto a limit cycle, the dynamics lie on an
attractor which can be described by a unique coordinate so
that the dimension of the attractor is one. The dimension is a
particularly useful measure as it takes into account inherent
symmetries in the system, e.g., the period-2 limit cycle be-
havior of the kinesin motors. Also, the dimension is an in-
variant of the dynamics and thus remains unchanged irre-
spective of the coordinates used to describe the system. This
is a feature particularly useful for comparing various sets of
experimental or computational results in a consistent manner.
In its usual definition, the dimension is calculated at steady
state. However, we would like to characterize changes in the
dimension of the attractor in time. Accordingly, we assume
the time scales of changes in the dimension take place slowly
relative to the dynamics of the system. The time series can
then be broken into intervals of sufficient length to calculate
an approximate correlation dimension �65,66�. The trajectory
is continuous, so the correlation dimension is calculated
based on the length of the trajectory inside a given neighbor-
hood instead of on the usual counting of numbers of points.
This results in an efficient and accurate method to calculate
the fractal/correlation dimension.

B. Energy analysis

In this section, a method is developed to quantify the
amount of energy in the phase-locked mode of coupled os-
cillators. Here, we use a definition for the modal energy in
the dynamics taken from proper orthogonal decomposition
analysis. The average modal energy in the dynamics is de-
fined, for a vector v, as

E =
1

T
�

0

T 1

2
vT�t�v�t�dt . �21�

Modal energy does not directly correlate to a physical en-
ergy, but is an energylike quadratic form that includes all
states of the dynamic system. If one of the components of v
corresponds to a velocity, its contribution to the average
modal energy corresponds to the associated average kinetic
energy. However, for states such as the chemical state vari-
able, there is no physical corollary to the energy and as such
the energy used in this analysis has no relationship to the

TABLE I. Parameter values for the mechanistic model obtained
by fitting the model to experimental data in �58�.

Parameter Value Units

Kh 7.23 pN/nm

Fw 5 pN

Ks 104 pN/nm

La 0.8 nm

Kb 1 pN/nm

�s 1.40 nm

�w −1.40 nm

�c −6.50 nm

nc 2

k1f ,0 53.47 �M s−1

k1b,0 2.94
103 s−1

k2f ,0 3.49
10−4 s−1

� 1.63 pN/nm
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FIG. 3. The stochastic model, using the same values of the
parameters as the deterministic model, fits the experimental data
from �58� well.
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amount of energy converted to mechanical work by the mo-
tor protein. Nonetheless, this definition of energy is useful
when analyzing the dominant dynamics of a system. If the
oscillators are phase-locked or the phase difference between
the oscillators is constant in time, the fraction of energy in
the phase-locked mode to the total amount of energy in the
dynamics is close to 1. If the oscillators are not perfectly
phase-locked, the fraction is lower. The energy-based method
simultaneously solves for the phase difference between os-
cillators. The calculation proceeds as follows. First, a matrix
is constructed of the values of the states of the system at
many times

X = �
x̄1�t1� x̄1�t2� ¯ x̄1�tN�
x̄2�t1� x̄2�t2� ¯ x̄2�tN�
] ] � ]

x̄M�t1� x̄M�t2� ¯ x̄M�tN�
� , �22�

where x̄m�tn� denotes the states of oscillator m at time tn.
Each oscillator is then phase shifted by a time �i with respect
to oscillator 1 such that

X��̄� = �
x̄1�t1� x̄1�t2� ¯ x̄1�tN�

x̄2�t1 + �1� x̄2�t2 + �1� ¯ x̄2�tN + �1�
] ] � ]

x̄M�t1 + �M−1� x̄M�t2 + �M−1� ¯ x̄M�tN + �M−1�
�

= �X1 X2 ¯ XN � , �23�

where �̄= ��1 ,�2 , ¯ ,�M−1� is a vector containing the phase
shift of each oscillator with respect to oscillator 1. Next, we
seek to transform to a coordinate system that moves with the
average velocity of the oscillators. Thus, we define a mode
shape of the drift, the component of the dynamics due to the
average velocity of the oscillators �i.e., when all states are
moving together�, as

D = �1,1, . . . ,1�T. �24�

We can then subtract the component of dynamics due to the
drift and the mean

Xn� = Xn −
DTXn

DTD
D , �25�

X̃n = Xn� − �Xn�� . �26�

The variables X̃n represent fluctuations of zero mean in the
moving coordinates which follow the drift motion. For the
kinesin model, the states of each motor �oscillator� are de-
fined as

x̄m = �xhead1, xhead2, xneck, ��T, �27�

where the states are defined by the position of head 1, the
position of head 2, the position of the neck, and the chemical
state variable. On the moving coordinate frame that follows
the average motion of the molecule, synchronous motion will
occur when head 1 of each motor is moving forward, head 2
is moving backward, the hinge is stationary, and the chemi-
cal state variable is constant. Thus, we define the mode shape

of the synchronous motion for each motor as

s̄m = �1, − 1, 0, 0�T. �28�

The mode shape of synchronous motion for the collection of
oscillators is then

S = �s̄1
T, s̄2

T, ¯ , s̄M
T �T. �29�

From the definition in Eq. �21� for small time intervals �tn
− tn−1�, the total energy in the dynamics can be approximated
as

Etot =
1

2Ttot
�
n=1

N

t�X̃n
TX̃n� , �30�

where t= tn− tn−1 and Ttot=�n=1
N t. We now seek the com-

ponent of the energy along the vector S or the energy in the

phase-shifted mode. The projection of X̃n along S is given by

X̃n
� =

STXn

STS
S . �31�

The energy in the phase-shifted mode is then

Eps��̄� =
1

2Ttot
�
n=1

N

t��X̃n
� �T�X̃n

� �� =
1

2Ttot
�
n=1

N

t
�STX̃n�2

STS
.

�32�

Finally, an optimization routine is used to find the time de-
lays, �̄, that correspond to the maximum energy in the phase-
shifted mode. The optimization routine minimizes the cost
function

C��̄� = 1 −
Eps

Etot
. �33�

The cost function is shown as a function of the phase �̄ for
two coupled motor proteins in Fig. 4 where �̄ has only one
entry, i.e., it is a scalar. If the cost function is minimum at �̄,
the function will also be minimum at �̄+T, where T is the
period of the oscillator. Thus, we choose the phase where the
magnitudes of both �̄ and the cost function are minimum.
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FIG. 4. The cost function �Eq. �33�� as a function of phase
calculated for the simulated dynamics of two coupled motors. An
optimization routine is used to find the minimum of the cost func-
tion, which corresponds to the maximum energy in the phase-
locked mode.
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The energy analysis results in the fraction of energy in the
phase-locked mode and the phase between oscillators.

IV. RESULTS

The mechanistic model presented in this paper describes
the transient stochastic dynamics of kinesin, making it well
suited to study the collective behavior of multiple motors
transporting a common cargo. A typical prediction of the
stochastic model for two coupled motors is shown in Fig. 5.
The stochastic chemical kinetics affect the collective dynam-

ics as the motors are perturbed away from a phase-locked
state by stochastic fluctuations. To become fully synchro-
nized, the coupling forces would have to overcome the fluc-
tuations from the chemical kinetics. In this section, the met-
rics presented in Sec. III are used to investigate the collective
dynamics of coupled kinesin motors, with respect to the
cargo linker stiffness, load, and the number of motors. For
each case, the data consist of ten independent simulations of
50 steps each.

A. Effect of cargo linker stiffness

The stiffness of the cargo linker directly affects the cou-
pling strength or the energetic advantage the motors gain by
synchronizing. As the stiffness increases, a difference in the
strain of the cargo linkers of coupled motors translates to a
larger difference in the load each motor carries. For example,
if the cargo linker stiffness is 0.1 pN/nm and the difference
in strain of the cargo linkers is 1 nm, the difference in load of
the two motors is 0.1 pN. If the stiffness is increased to 1
pN/nm, the difference in the load is increased to 1 pN. Thus,
it is expected that the motors will tend to synchronize as the
cargo linker stiffness is increased. The results of the model
are consistent with this expectation, as is shown in Fig. 6.
The fraction of energy in the phase-locked mode increases as
the stiffness increases. The effect is more pronounced at
higher loads, as higher loads increase the incentive to syn-
chronize. The correlation dimension also increases with
cargo linker stiffness, indicating that while the motors be-
come more synchronized �i.e., spatially coherent�, the trajec-
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tory becomes more complicated temporally. The standard de-
viation of the correlation dimension, shown by the error bars,
also increases with the cargo linker stiffness, indicating that
stochasticity affects the trajectories more at higher cargo
linker stiffness. In summary, the dynamics of the motors be-
come more correlated with increasing load, while the trajec-
tory of the motors becomes more complex in time. Step size
distributions were calculated using the cumulated step size
data from all runs and using a bin size of 0.5 nm. The value
of the probability density of the step size distributions at the
expected step size x0 is shown in Fig. 6. The expected step
size is taken as x0= �8 nm�/�number of motors�. For ex-
ample, the step size of the cargo when transported by a single
kinesin motor is 8 nm. If two motors are transporting a cargo
and they are not stepping in synchrony, then the cargo will
advance 4 nm each time one of the motors steps. The value
of the probability density of the step size distributions at x0
increases as the motors become more synchronized, indicat-
ing that the distribution narrows. At the highest stiffness, the
probability density at x0 decreases as the distribution
broadens. This suggests that complexity in the trajectory, in-
dicated by increases in the correlation dimension, causes the
step size distribution to broaden while correlation between
the motors, indicated by increases in the fraction of the en-
ergy in the phase-locked mode, causes the step size distribu-
tion to narrow.

B. Effect of load

Like the effect of the cargo linker stiffness, the load also
increases the coupling strength. The slope of the force-
velocity curve increases from approximately 50 nm/s/pN for
loads below 2 pN to approximately 200 nm/s/pN at loads
greater than 3 pN. Therefore, for a given difference in the
loads between motors, the difference in the average velocity
of the two motors will increase with the load on the cargo.
As shown in Fig. 7, the load increases the coupling strength,
which in turn increases the amount of energy in the phase-
locked mode. Analogous to the effect of increasing the cou-
pling strength through the cargo linker stiffness, the correla-
tion dimension also increases with load, indicating
trajectories are more complex temporally at high loads. Load
also increases the effect of stochasticity on the dynamics, as
the standard deviation of the fraction of energy in the phase-
locked mode and the correlation dimension increases with
load. The results suggest that even for many coupled motors,
the velocity is strongly correlated with the load per motor.
The step size distribution narrows as the load is increased,
evidenced by the value of the probability density at x0 in-
creasing with load.

C. Effect of number of motors

While the coupling strength is proportional to the cargo
linker stiffness and the load, the number of motors does not
affect the coupling strength. However, the chemical kinetics
of each motor is dependent on random processes that are
independent for each motor. Thus, each motor represents the
addition of an independent random process to the system,
suggesting that the degree of synchronization should de-

crease with the number of motors. As shown in Fig. 8, the
fraction of energy in the phase-locked mode decreases with
the number of motors. Alternatively, one may argue that be-
cause the velocity of the cargo becomes more constant as the
number of motors increases, the forces on the motors must
also become more constant, implying greater synchroniza-
tion. However, while it is true that the total force on the
cargo �i.e., the sum of the forces on all of the motors� be-
comes more constant with greater numbers of motors, the
variance of the forces on each individual motor need not
decrease. Consider the force F= f1+ f2. There are many cases
where f1 and f2 can vary in time, but sum such that F is
constant. Although the fraction of energy in the phase-locked
mode decreases with the number of motors, the correlation
dimension is not appreciably affected by the number of mo-
tors �the variation is within the standard deviation�, indicat-
ing that the trajectory remains similar as the number of mo-
tors is increased. The value of the correlation dimension of
approximately 1.5 indicates that the trajectory, in a specific
coordinate system, lies on a torus. Taken together, the corre-
lation dimension and energy analysis indicate that the dy-
namics of coupled motors are correlated. However, the en-
ergy analysis, which only considers constant phase
differences between the motors, indicates a small fraction of
the energy is in the phase-locked mode. This suggests that
the correlation between the motors cannot be described by a
constant phase between each motor, but is likely due to a
time-varying periodic phase between the motors. The step
size distribution narrows with the number of motors, indicat-
ing that the step size distribution narrows as the correlation
dimension decreases, as in Fig. 6. The mean step size de-
creases with the number of motors, indicating the motors are
not fully synchronized �phase-locked with a phase difference
of 0�, in agreement with the correlation dimension and en-
ergy analyses.

V. DISCUSSION

The goal of this work was to develop a stochastic model
capable of predicting the dynamics of kinesin motors
coupled to a shared load. Toward this goal, a deterministic
model developed previously by the authors �52,56� was ex-
tended to include stochastic chemical kinetics, yielding a sto-
chastic model capable of describing the transient dynamics
of kinesin. The resulting model is therefore well suited to
investigate the collective behavior of kinesin. While coupled
deterministic motors are able to phase lock at certain condi-
tions �56�, stochastic motors tend to fluctuate about a phase-
locked state as a result of competing forces. The coupling
force drives the motors to a phase-locked state, while fluc-
tuations due to the stochastic chemical kinetics perturb the
motors away from the phase-locked state. The predictions
made by the mechanistic model suggest that the degree of
synchronization of coupled kinesin motors is dependent on
the mechanical properties of the motors, the load, and the
number of motors involved in the transport. While the mo-
tors never completely synchronize, the degree of synchroni-
zation increases when the coupling strength is increased ei-
ther through the cargo linker stiffness or the load. At low
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loads, the motors are loosely coupled and do not synchro-
nize. However, higher loads increase the coupling strength
and cause the degree of synchronization to increase, aug-
menting the efficiency and the maximum force exerted. This
result likely holds corollaries for transport in the cell, where
motor proteins are expected to be under low load when trans-
porting cargos and their dynamics are loosely correlated.
When the cargo encounters an obstacle such as the cytoskel-
eton or collisions with other vesicles, the dynamics of the
motors become better correlated in response to higher loads,
allowing them to overcome the obstacle.

The behavior of coupled motors in response to load also
points to an advantage that kinesin gains by functioning col-
lectively. Kinesin motors are coupled in such a way that they
do not interfere with each other during normal transport.

However, when they encounter an obstacle, they can become
more synchronized to produce greater forces. Unfortunately,
current experimental observations of intracellular transport
do not provide a measurement of the load. Likewise, the
cargo linker stiffness of kinesin has not been measured accu-
rately. Data from future experiments are therefore needed to
refine the predictions of the model.

Current experiments estimate intracellular transport is
driven by teams of two to ten motors �1,19,53�. The results
of the model indicate that the degree of synchronization de-
creases with the number of motors, as evidenced by the de-
crease in the fraction of energy in the phase-locked mode
with increasing numbers of motors. At the same time, the
dimension of the trajectory does not appreciably increase
with the number of motors, suggesting that several motors
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interact such that their motion is highly correlated, but can-
not be described by a constant phase lag between motors.
The correlation dimension suggests that although several
coupled kinesin motors do not fully synchronize, their dy-
namics are highly correlated, allowing several motors to
function collectively such that the speed of the transport is
not degraded. This points to a periodic, time-varying phase
between the motors.

Several researchers made in vivo observations of transport
directed toward the plus end of the microtubule at velocities
faster than the maximum velocities of kinesin observed for
single molecules in vitro �20–23�. Velocities of up to ten
times the single-molecule velocity have been reported in
some in vivo experiments tracking vesicle movement �22�,
suggesting that greater velocities may be due to the coordi-
nation of many kinesin motors. Our modeling work is not
consistent with such observations. The results of the mecha-

nistic model predict that the force-velocity curve for coupled
motors is very similar to the single-molecule force-velocity
curve when the velocity is plotted against the average load
per motor, as shown in Fig. 7. Several explanations may
account for this discrepancy. For example, there may have
been motors other than kinesin-1 involved in the transport of
vesicles in vivo or as yet unidentified proteins that upregulate
the activity of kinesin-1. Also, in some studies, the observed
increases in velocities were observed infrequently and over
short distances �20 nm� as expected from short-term diffu-
sive events �22�. Alternately, the fundamental head-to-head
coupling of kinesin may change when in a multiple-motor
orientation, resulting in a dramatic increase in velocity, or
that larger numbers of motors than studied here �greater than
10� are involved in the transport in vivo.

The model results put forth several quantitative predic-
tions of the collective dynamics of kinesin that can now be
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tested experimentally. First, the model predicts that the force-
velocity curve for multiple coupled motors transporting a
load closely matches the single-molecule force-velocity
curve when the velocity is plotted against the average load
per motor. In addition, the relationship between the correla-
tion dimension and cargo linker stiffness, load, and number
of motors can be compared to force-clamp measurements of
transport by multiple kinesin motors. Note that the correla-
tion dimension can be calculated from the record of the bead
locations in time using embedded coordinates �65�. Step size
distributions and dwell time distributions can also be com-
pared to experiment using a step-finding algorithm such as
the one used by Kerssemakers et al. �67�. To test these pre-
dictions, careful observations of transport by multiple motors
are needed. For comparison to theoretical models, it is essen-
tial to measure the number of motors involved in the trans-
port as well as the mechanical properties �e.g., cargo linker
stiffness�. Observations of a known number of motors trans-
porting a cargo at a known load would severely constrain
theoretical models of collective transport. In addition, it may
be possible to modulate the coupling between motors by en-

gineering constructs with different cargo linker stiffnesses
by, for example, inserting different lengths of a coiled-coil
domain into the cargo linker.

The model proposed herein assumes that the mechanisms
of kinesin do not change fundamentally when functioning
collectively, i.e., the mechanisms of each motor involved in
coordinated transport are synonymous with the single-
molecule operation, with the exception of time-varying loads
induced on each motor through their interaction. Compari-
sons of the results of the model to experiment have the po-
tential to elucidate a fundamental question of intracellular
transport: Are the single-molecule mechanisms of kinesin,
such as head-to-head coordination, analogous to the collec-
tive mechanisms of kinesin motors, or do coupled motors
exhibit a distinct mode of movement responsible for the in-
creased velocities observed in vivo?
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